contestada

A pendulum is formed by taking a 2.0 kg mass and hanging it from the ceiling using a steel wire with a diameter of 1.1 mm. it is observed that the wire stretches by 0.05 mm under the weight of the mass. what is the period of oscillation of the pendulum?

Relax

Respuesta :

Answer: 1.39 s

Explanation:

We can solve this problem with the following equations:

[tex]\frac{\Delta l}{l_{o}}=\frac{F}{AY}[/tex] (1)

[tex]T=2 \pi \sqrt{\frac{l_{o}}{g}}[/tex] (2)

Where:

[tex]\Delta l=0.05 mm=5(10)^{-5} m[/tex] is the length the steel wire streches (taking into account 1mm=0.001 m)

[tex]l_{o}[/tex] is the length of the steel wire before being streched

[tex]F=mg=(2 kg)(9.8 m/s^{2})=19.6 N[/tex] is the force due gravity (the weight) acting on the pendulum with mass [tex]m=2 kg[/tex]

[tex]A[/tex] is the transversal area of the wire

[tex]Y=2(10)^{11} Pa[/tex] is the Young modulus for steel

[tex]T[/tex] is the period of the pendulum

[tex]g=9.8 m/s^{2}[/tex] is the acceleration due gravity

Knowing this, let's begin by finding [tex]A[/tex]:

[tex]A=\pi r^{2}=\pi (\frac{d}{2})^{2}=\pi \frac{d^{2}}{4}[/tex] (3)

Where [tex]d=1.1 mm=0.0011 m[/tex] is the diameter of the wire

[tex]A=\pi \frac{(0.0011 m)^{2}}{4}[/tex] (4)

[tex]A=9.5(10)^{-7}m^{2}[/tex] (5)

Knowing this area we can isolate [tex]l_{o}[/tex] from (1):

[tex]l_{o}=\frac{\Delta l AY}{F}[/tex] (6)

And substitute [tex]l_{o}[/tex] in (2):

[tex]T=2 \pi \sqrt{\frac{\frac{\Delta l AY}{F}}{g}}[/tex] (7)

[tex]T=2 \pi \sqrt{\frac{\frac{(5(10)^{-5} m)(9.5(10)^{-7}m^{2})(2(10)^{11} Pa)}{2(10)^{11} Pa}}{9.8 m/s^{2}}}[/tex] (8)

Finally:

[tex]T=1.39 s[/tex]