
Respuesta :
Part a: Â f(x, y) = xy^2/30; Â f(x, z) = Â xz/36; Â f(y, z) = zy^2/30.
Part b: marginal distributions: f(x) = x/6; f(y) = y^2/5; f(z) =z/6.
Part c: P(Y = 2|X = 1, Z = 3) = 0.8.
Part d:  P(X ≥ 2, Y = 2|Z = 2) = 0.667.
Part e: In this case, X, Y, and Z all independent variables
Explain the term Joint distribution?
- Multiple discrete random variables make up the joint distribution function.
- A joint probability of a given random variables is computed using it.
- The joint function can be used to get the marginal function of a random variables.
Part a: Â f(x, y, z) = xy^2 z/180, x = 1, 2, 3; y = 1, 2; z = 1, 2, 3 .
f(x, y) = ∑(z = 1 →3)  f(x, y, z)
     = ∑(z = 1 →3) xy^2 z/180
     = xy^2 /180 ( 1 + 2 + 3)
     = xy^2/30
f(x, z) = ∑(y = 1 →2)  f(x, y, z)
     = ∑(y = 1 →2) xy^2 z/180
     = xz /180 ( 1² + 2²)
     = xz/36
f(y, z) = ∑(x = 1 →3)  f(x, y, z)
     = ∑(x = 1 →3) xy^2 z/180
     = zy^2/180 (1 + 2 + 3)
     = zy^2/30
Part b: Â marginal distributions f_1(x), f_2(y), and f_3(z).
f(x) = ∑(y = 1 →2)  f(x, y)
   = ∑(y = 1 →2) xy^2/30
   = x/6
f(y) = ∑(x = 1 →3)  f(x, y)
   = ∑(x = 1 →3) xy^2/30
   = y^2/5
f(z) = ∑(x = 1 →3)  f(x, z)
   = ∑(x = 1 →3) xz/36
   = z/6
Part c: P(Y = 2|X = 1, Z = 3)
P(Y = 2|X = 1, Z = 3) = (1 x 2 x 3)/180 / (1 x 3)/36
P(Y = 2|X = 1, Z = 3) = 0.8
Part d:  P(X ≥ 2, Y = 2|Z = 2)
P(X ≥ 2, Y = 2|Z = 2) = P(2, 2, 2)+P(3,2,2)/P(Z = 2)
P(X ≥ 2, Y = 2|Z = 2) = [(2 x 2² x 2)/180 + (3 x 2² x 2)/180] / (2/6)
P(X ≥ 2, Y = 2|Z = 2) = 0.667
Part e: In this case, X, Y, and Z all independent variables since their joint function equals the sum of their marginal functions.
f(x, y, z) = f(x) x f(y) x f(z)
To now more about the Joint distribution, here
https://brainly.com/question/6003812
#SPJ4