ILL MARK BRAINILEST !!! 60 POINTS 25x4 βˆ’ 8y4 is not the difference of two squares. Identify the correct explanation for this statement. 25x4 is not a perfect square. 8y4 is not a perfect square. Neither 25x4 nor 8y4 are perfect squares. Both 25x4 and 8y4 are perfect squares.

Relax

Respuesta :

Β° β•‘_Answer_β•‘Β°

β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹

8y4 is not a perfect square.

β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹

Step-by-step explanation:

β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹

Knowing that; A difference of two perfect squares, Β A2 - B2 Β can also be factored into Β (A+B) β€’ (A-B)

Verification;

(A+B) β€’ (A-B) =

A2 - AB + BA - B2 =

A2 - AB + AB - B2 =

A2 - B2

Notes;

AB = BA is the commutative property of multiplication.

AB + AB equals zero and is therefore eliminated from the expression.

Answer:

25 Β is the square of Β 5

8 is not a square

β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹β‚‹

~[RevyBreeze]~