
Answer:
The right answer is:
(a) -10.67
(b) 0.7986
Step-by-step explanation:
(a)
According to the question,
X Â Â Â Â Â Â Â Â Â Â Â Â Â P(X) Â Â Â Â Â Â Â Â Â X.P(X) Â Â Â Â Â Â Â Â X2.P(X)
12130 Â Â Â Â Â Â Â Â Â 0.002 Â Â Â Â Â Â Â 24.26 Â Â Â Â Â Â Â Â 294274
-35 Â Â Â Â Â Â Â Â Â Â Â 0.998 Â Â Â Â Â Â Â -34.93 Â Â Â Â Â Â Â Â 1222.55 Â Â Â
Now,
[tex]\Sigma x.P(x) = -10.67[/tex]
or,
[tex]\Sigma x^2.P(x) = 295496.35[/tex]
hence,
The mean will be:
[tex]\Sigma x.P(x) = -10.67[/tex]
(b)
According to the question,
n = 12
p = 0.125
q = 1 - p
 = 0.875
Now,
⇒ [tex]P(X=x) = \binom{n}{x} p^x q^{n-x}[/tex]
By substituting the values, we get
⇒ [tex]P(X \geq 1)=1-(\binom{12}{0} 0.125^0. 0.875^{12-0})[/tex]
⇒          [tex]=1-(1 (0.125^0) (0.875^{12}))[/tex]
⇒          [tex]=1-(1(1.0)(0.2014))[/tex]
⇒          [tex]=1-(0.2014)[/tex]
⇒          [tex]=0.7986[/tex]  Â