
Answer:
a) A(x) =  360*x  -  3*x²
b) The Domain of the function is ( 0 : ∞ )
c) x  =  60 yards
  y  =  180 yards
c) A(max) = 10800 yd²
Step-by-step explanation:
Two rectangular corrals, with sides y and x  ( y is the side parallel to the river) having a river as one side of the corrals means:
L Â length to be fenced
L = y + 3*x     360  =  y  +  3*x    y  =  360  -  3*x
The total areaof the two corrals as a function of x is
A(t)  =  x*y     as   y  =  360  -  3*x  by substitution we get
A(x) Â = Â x * ( 360 Â - 3*x)
A(x) =  360*x  -  3*x²
Tacking derivatives on both sides of the equation we get:
A´(x)  =  360  - 6*x      A´(x)  =  0   360  -  6*x  =  0
x  =  60 yards
and  y  =  360  -  3*x    y  =  360  -  180   y  =  180 yards
A(max) =  60*180  =  10800 yd²
To find out if the value x  =  60 is the x value for a maximum of A we go to the second derivative
A´´(x) =  - 6    A´´(x)  < 0  then there is a maximum value for function A in x = 60
The Domain of the function is ( 0 : ∞ )