
Respuesta :
Answer:
4.4%
Step-by-step explanation:
A=P\left(1+\frac{r}{n}\right)^{nt}
A=P(1+ Â
n
r
​ Â
) Â
nt
Â
Compound interest formula
A=11700\hspace{35px}P=6900\hspace{35px}t=12\hspace{35px}n=365
A=11700P=6900t=12n=365
Given values
11700=
11700=
\,\,6900\left(1+\frac{r}{365}\right)^{365(12)}
6900(1+ Â
365
r
​ Â
) Â
365(12)
Â
Plug in values
11700=
11700=
\,\,6900\left(1+\frac{r}{365}\right)^{4380}
6900(1+ Â
365
r
​ Â
) Â
4380
Â
Multiply
\frac{11700}{6900}=
6900
11700
​ Â
=
\,\,\frac{6900\left(1+\frac{r}{365}\right)^{4380}}{6900}
6900
6900(1+ Â
365
r
​ Â
) Â
4380
Â
​ Â
Â
Divide by 6900
1.695652174=
1.695652174=
\,\,\left(1+\frac{r}{365}\right)^{4380}
(1+ Â
365
r
​ Â
) Â
4380
Â
\left(1.695652174\right)^{1/4380}=
(1.695652174) Â
1/4380
=
\,\,\left[\left(1+\frac{r}{365}\right)^{4380}\right]^{1/4380}
[(1+ Â
365
r
​ Â
) Â
4380
] Â
1/4380
Â
Raise both sides to 1/4380 power
1.000120571=
1.000120571=
\,\,1+\frac{r}{365}
1+ Â
365
r
​ Â
Â
-1\phantom{=}
−1=
\,\,-1
−1
Subtract 1
0.000120571=
0.000120571=
\,\,\frac{r}{365}
365
r
​ Â
Â
365\left(0.0001206\right)=
365(0.0001206)=
\,\,\left(\frac{r}{365}\right)365
( Â
365
r
​ Â
)365
Multiply by 365
0.044008415=
0.044008415=
\,\,r
r
4.4008415\%=
4.4008415%=
\,\,r
r