Respuesta :
Answer:
* E_ring = [tex]k \ \frac{x}{(x^2+ y^2)^{3/2} } \ Q[/tex]
*E_ disk= 2kQ Â [tex]\frac{1}{R^2} \ (1 - \frac{x}{(x^2+ R^2)^{1/2} } )[/tex]
Explanation:
Let's start by finding the electric field of the charged ring
in the attachment we can see a diagram of the system. Due to circular symmetry, the electric field perpendicular to the axis is canceled and only the electric field remains parallel to the axis.
      Eₓ = E cos θ      (1)
      E = k ∫  [tex]\frac{dq}{r^2}[/tex]
      cos θ = x / r
      Â
using the Pythagorean theorem
      r = [tex]\sqrt{x^2 + y^2}[/tex]
we substitute
      Eₓ = k ∫ [tex]\frac{dq}{x^2+y^2} \ \frac{x}{\sqrt{ x^2+y^2} }[/tex]
      Eₓ =  [tex]k \frac{x}{(c^2+y^2)^{3/2} }[/tex]  ∫ dq
       Eₓ = k \frac{x}{(c^2+y^2)^{3/2} }  Q
the ring's electric field
       E_ring = [tex]k \ \frac{x}{(x^2+ y^2)^{3/2} } \ Q[/tex]
Now let's find the electric field of the disk
The charge is distributed over the entire disk, so let's use the concept of charge density
       σ = [tex]\frac{dq}{dA}[/tex]
Let's approximate the disk as a group of rings, the width of each ring is dr, the area is
       dA = 2πr dr
       Â
we substitute
       σ = [tex]\frac{1}{2\pi r} \ \frac{dq}{dr}[/tex]
       dq = 2π σ r dr
we substitute in equation 1, where the electrioc field is of each ring
       Eₓ = [tex]k \int\limits^R_0 \ { \frac{x}{(x^2+r^2)^{3/2} } \ 2\pi \sigma \ r } \, dr[/tex]
      Â
if we use a change of variable
        dv = 2rdr
        v = r²
       Eₓ =  [tex]k x \pi \sigma \int\limits^a_b { \frac{1}{(x^2+v)^{3/2} } } \, dv[/tex]
we integrate
       Eₓ = k x π σ  [tex][ \frac{ (x^2 + r^2)^{-1/2} }{-1/2} ][/tex]
we value in the limits from r = 0 to r = R
       Eₓ = k π σ x  (-2) [ [tex]\frac{1}{ \sqrt{x^2+R^2} } - \frac{1}{x}[/tex]]
       Eₓ = 2π k  σ ([tex]1 - \frac{x}{(x^2 + R^2 ) ^{1/2} }[/tex]  )
Â
       σ = Q/πR²
substitute
       Eₓ = 2 k Q/R² (1 - \frac{x}{(x^2 + R^2 ) ^{1/2} } )
       E_ disk= 2kQ  [tex]\frac{1}{R^2} \ (1 - \frac{x}{(x^2+ R^2)^{1/2} } )[/tex]
      Â
The two electric fields are
* E_ring = [tex]k \ \frac{x}{(x^2+ y^2)^{3/2} } \ Q[/tex]
*E_ disk= 2kQ Â [tex]\frac{1}{R^2} \ (1 - \frac{x}{(x^2+ R^2)^{1/2} } )[/tex]
we can see that the functional relationship of the two fields is different