Mr. Greenjeans wants to make a triangle shaped garden. Two sides of the garden are 52 meters and 90 meters. The angle between these two sides is 102º. What is the area of the garden?

Relax

Respuesta :

Answer:

[tex]Area = 2288.754m^2[/tex]

Step-by-step explanation:

The given parameters can be represented as:

[tex]A = 52m[/tex]

[tex]B=90m[/tex]

[tex]\theta = 102^{\circ}[/tex]

Required

Determine the area of the garden

Provided that [tex]\theta[/tex] is between A and B, the area is:

[tex]Area = \frac{1}{2}AB sin(\theta)[/tex]

Substitute values for A, B and [tex]\theta[/tex]

[tex]Area = \frac{1}{2}AB sin(\theta)[/tex]

[tex]Area = \frac{1}{2} * 52 * 90 * sin(102)[/tex]

[tex]Area = \frac{1}{2} * 52 * 90 * 0.9781[/tex]

[tex]Area = \frac{52 * 90 * 0.9781}{2}[/tex]

[tex]Area = \frac{4577.508}{2}[/tex]

[tex]Area = 2288.754[/tex]

Hence, the area of the garden is [tex]2288.754m^2[/tex]