
Respuesta :
Answer:
See Step by step explanation
Step-by-step explanation:
Objective Function: Â z
x = Â number of contemporary style
y = number of farmhouse style
Costs
Carpentry costs:
15*2*x  +  15*2,5*y   =  30*x  +  37,5*y
Painting costs
12*1,5*x  +  12*1*y    =  18*x  +  12*y
Finishing costs
18*1,3*x  +  18*1,2*y   = 23,4*x  + 21,6*y
Total costs:
30*x  + 37,5*y + 18*x  + 12*y  + 23,4*x  + 21,6*y
71,4*x  +  71,1*y
z  =  90*x  +  85*y - ( 71,4*x  +  71,1*y )  to maximize
z  = 18,6*x  +  13,9*y  to maximize
Subject to:
First constraint:
Hours available in carpentry   3000
2*x  +  2,5*y ≤  3000
Second constraint
Hours available in painting  1500
1,5*x  +  1*y  ≤  1500
Third constraint
Hours available in finishing  1500
1,3*x  +  1,2*y  ≤ 1500
Fourth constraint
Minimum quantity of contemporary style  500
x ≥  500
Fifth constraint
Minimum quantity of farmhouse style  650
y  ≥  650
General constraints:
x  ≥  0   y  ≥  0  x , y  integers
Model:
z  =  90*x  +  85*y - ( 71,4*x  +  71,1*y )  to maximize
Subject to:
2*x  +  2,5*y ≤  3000
1,5*x  +  1*y  ≤  1500
1,3*x  +  1,2*y  ≤ 1500
x ≥  500
y  ≥  650
x  ≥  0   y  ≥  0  x , y  integers
The mathematical expression for each of the constraints on the three processes.
Model z  =  90*x  +  85*y - ( 71,4*x  +  71,1*y ) Â
Subject to
2*x  +  2,5*y ≤  3000
1,5*x  +  1*y  ≤  1500
1,3*x  +  1,2*y  ≤ 1500
x ≥  500
y  ≥  650
x  ≥  0   y  ≥  0  x , y  integers.
We, wants to maximize the total weekly profit.
What is the meaning of constraints?
a constraint is a condition of an optimization problem that the solution must satisfy.
Objective function: Â z
x = Â number of contemporary style
y = number of farmhouse style
We have to find the cost
The carpentry costs is,
15*2*x  +  15*2,5*y   = 30*x  +  37,5*y
The painting costs is
12*1,5*x  +  12*1*y    =  18*x  +  12*y
The finishing costs is
18*1,3*x  +  18*1,2*y   = 23,4*x  + 21,6*y
Therefore the total costs is,
30*x  + 37,5*y + 18*x  + 12*y  + 23,4*x  + 21,6*y
71,4*x  +  71,1*y
z  =  90*x  +  85*y - ( 71,4*x  +  71,1*y )  to maximize
z  = 18,6*x  +  13,9*y  to maximize
Subject to the constraint;
The first constraint is,
The hours available in carpentry  3000
2*x  +  2,5*y ≤  3000
The second constraint is,
Hours available in painting  1500 so,
1,5*x  +  1*y  ≤  1500
The third constraint is,
Hours available in finishing  1500 so,
1,3*x  +  1,2*y  ≤ 1500
Fourth constraint is,
The minimum quantity of contemporary style  500 so,
x ≥  500
The fifth constraint is
The minimum quantity of farmhouse style  650 so,
y  ≥  650
The general constraints are,
x  ≥  0   y  ≥  0  x , y integers,
Therefore the Model z  =  90*x  +  85*y - ( 71,4*x  +  71,1*y )  to maximize,
Subject to
2*x  +  2,5*y ≤  3000
1,5*x  +  1*y  ≤  1500
1,3*x  +  1,2*y  ≤ 1500
x ≥  500
y  ≥  650
x  ≥  0   y  ≥  0  x , y  integers,
To learn more about the constraint visit:
https://brainly.com/question/6073946