
Answer:
We know that the section formula states that if a point P(x,y) lies on line segment AB joining the points A(x
1
,y
1
) and B(x
2
,y
2
) and satisfies AP:PB=m:n, then we say that P divides internally AB in the ratio m:n. The coordinates of the point of division has the coordinates
P=(
m+n
mx
2
+nx
1
,
m+n
my
2
+ny
1
)
Let C(1,1) divides the line segment AB joining the points A(β2,7) and B(x
2
,y
2
) in the ratio 3:2, then using section formula we get,
C=(
m+n
mx
2
+nx
1
,
m+n
my
2
+ny
1
)
β(1,1)=(
3+2
3x
2
+(2Γβ2)
,
3+2
3y
2
+(2Γ7)
)
β(1,1)=(
5
3x
2
β4
,
5
3y
2
+14
)
β1=
5
3x
2
β4
,1=
5
3y
2
+14
β5=3x
2
β4,5=3y
2
+14
β3x
2
=5+4,3y
2
=5β14
β3x
2
=9,3y
2
=β9
βx
2
=
3
9
,y
2
=β
3
9
βx
2
=3,y
2
=β3
Hence, the point B(x
2
,y
2
) is B(3,β3).