
Respuesta :
Answer:
a
 [tex]v_r =8.65 \ ft/s [/tex]
b
 [tex] W_{1-2} =  3.24 \  ft \cdot lb[/tex]
Explanation:
From the question we are told that
 The mass of the ball is [tex]m  =  4 \  lb[/tex]
 The radius is  [tex]r= 3 \  ft[/tex]
  The speed is [tex]v_B_1  =  4.8 \ ft /s[/tex]
  The speed of the attached cord is  [tex]v_c =2.2 \  ft[/tex]
  The position that is been considered is  [tex]r_1 =  2 \  ft[/tex]h
Generally according to the law of angular momentum conservation
  [tex]L_a =  L_b[/tex]
Here [tex]L_a[/tex] is the initial  momentum of the ball which is mathematically represented as
   [tex]L_a  =  m*  v_B_1 *  r[/tex]
while Â
[tex]L_b[/tex] is the  momentum of the ball  at  r =  2 ft which is mathematically represented as
    [tex]L_a  =  m*  v_B_2 *  r_1[/tex]
So
   [tex]m*  v_B_1 *  r = m*  v_B_2 *  r_1[/tex]
=> Â Â Â [tex] 4.8 * Â 3 = Â v_B_2 * Â 2[/tex]
=> Â Â [tex] Â v_B_2 = Â 7.2 \ Â ft/s [/tex]
Generally the resultant velocity of the ball is Â
   [tex]v_r = \sqrt{v_B_2^2 + v_B_1^2  }[/tex]
=> Â [tex]v_r = \sqrt{7.2^2 + 4.8^2 Â }[/tex]
=> Â [tex]v_r =8.65 \ ft/s [/tex]
Generally according to equation for principle of work and energy we have that
  [tex]K_1 + \sum W_{1-2} = K_2[/tex]
Here [tex]K_1[/tex] is the initial kinetic energy of the ball which is mathematically represented as
[tex]K_1 Â = Â \frac{1}{2} Â * Â m* v_B_1^2[/tex]
While  [tex]\sum W_{1-2}[/tex] is the sum of the total  workdone by the ball
and  [tex]K_2[/tex] is the final kinetic energy of the ball  which is mathematically represented as  [tex]K_2  =  \frac{1}{2}  *  m* v_r^2[/tex]
So
   [tex]\sum W_{1-2} =  \frac{1}{2}  *  m  (v_r^2  -  v_B_1^2)[/tex]
Here  m is the mass which is mathematically represented as
   [tex]m = \frac{W}{g}[/tex] here W is the weight in  lb and  g is the acceleration due to gravity which is [tex]g =  32 \ ft/s^2[/tex]
So
  [tex]\sum W_{1-2} =  \frac{1}{2}  *  \frac{4}{32} *  (8.65^2  -  4.8^2)[/tex]
=> Â [tex] W_{1-2} = Â 3.24 \ Â ft \cdot lb[/tex]
 Â
 Â