
Answer:
Modification has not reduced the number of accidents.
Step-by-step explanation:
[tex]H_0: \mu\geq0\\H_a:\mu <0[/tex]
                 A  B  C  D  E  F  G  H
Before modification 5 Â 7 Â 6 Â 4 Â Â 8 Â 9 Â 8 Â 10
After modification   3  7  7  0   4  6  8   2
Difference         -2 0  1  -4  -4  -3  0  -8
Mean of differences [tex]M_d = \frac{sum}{8}=\frac{2+0-1+4+4+3-0+8}{8}=2.5[/tex]
Standard deviation of differences = [tex]\sqrt{\frac{\sum(x-\bar{x})^2}{n}}=2.9277[/tex]
Formula of paired t test :
[tex]t=\frac{M_d}{\frac{s}{\sqrt{n}}}\\t=\frac{2.5}{\frac{2.9277}{\sqrt{8}}}\\t = 2.4152[/tex]
Df = n-1 = 8-1 =7
[tex]t critical = t_{(df, \alpha)}=t_{7,0.01}=2.998[/tex]
t critical> t calculated
So, We failed to reject null hypothesis
Hence modification has not reduced the number of accidents.