Answer:
The  dimension is  [tex]D =  L ^{2} T^{-1}[/tex]
Explanation:
From the question we are told that
   [tex]J  =  -D \frac{dn}{dx}[/tex]
Here  [tex][J] = \frac{1}{L^2 T}[/tex]
    [tex][n] =\frac{1}{L^3}[/tex]
    [tex][x] = L[/tex]
So
  [tex]\frac{1}{L^2 T} =  -D \frac{d(\frac{1}{L^3})}{d[L]}[/tex]
Given that the dimension represent the unites of  n and  x then the differential  will not effect on them
So
[tex]\frac{1}{L^2 T} = Â -D \frac{(\frac{1}{L^3})}{[L]}[/tex]
=> Â [tex]D = Â \frac{L^{-2} T^{-1} * L }{L^{-3}}[/tex]
=> Â [tex]D = Â L ^{2} T^{-1}[/tex]
 Â