LetΒ R be a relation on a collection of sets defined as follows,

R={(A,B)|AβŠ†B}

Β  Β Then pick out the correct statement(s).

1) RΒ is reflexive and transitive

2) RΒ is symmetric

3) RΒ is antisymmetric.

4) RΒ is reflexive but not transitive​

Relax

Respuesta :

Answer:

Options 1) and 3) are correct.

Step-by-step explanation:

R={(A,B)|AβŠ†B}

Reflexive:

As AβŠ†A, Β [tex](A,A)[/tex]∈ R.

So, R is reflexive

Symmetric:

Let [tex](A,B)[/tex]∈ R. So, AβŠ†B

Take [tex]A=\{1,2\}\,,\,B=\{1,2,3,4\}[/tex]

Here, AβŠ†B but BβŠ„A

So, [tex](B,A)[/tex]βˆ‰ R

R is not symmetric

Transitive:

Let [tex](A,B)[/tex]∈ R and [tex](B,C)[/tex]∈ R

So, AβŠ†B and BβŠ†C.

Therefore, AβŠ†C

So,

[tex](A,C)[/tex]∈ R

Hence, R is transitive.

Option 1) is correct.

Antisymmetric:

Let (A,B)∈R and (B,A)∈R

So, AβŠ†B and BβŠ†A

Hence, A = B

So, R is antisymmetric

Option 3) is also correct.

Otras preguntas