
Answer:
Options 1) and 3) are correct.
Step-by-step explanation:
R={(A,B)|AβB}
Reflexive:
As AβA, Β [tex](A,A)[/tex]β R.
So, R is reflexive
Symmetric:
Let [tex](A,B)[/tex]β R. So, AβB
Take [tex]A=\{1,2\}\,,\,B=\{1,2,3,4\}[/tex]
Here, AβB but BβA
So, [tex](B,A)[/tex]β R
R is not symmetric
Transitive:
Let [tex](A,B)[/tex]β R and [tex](B,C)[/tex]β R
So, AβB and BβC.
Therefore, AβC
So,
[tex](A,C)[/tex]β R
Hence, R is transitive.
Option 1) is correct.
Antisymmetric:
Let (A,B)βR and (B,A)βR
So, AβB and BβA
Hence, A = B
So, R is antisymmetric
Option 3) is also correct.