
Answer:
Difference between upper and lower limits is : 1,816
Step-by-step explanation:
A CI (confidence interval ) for  t student distribution is:
( μ₀  - t(α/2)* s/√n  ;   μ₀  + t(α/2)* s/√n )
Where:
μ₀  is the mean and s the standard deviation of the dstribution
n size of the sample
CI = 90 %   means  α = 10 %   α = 0,1    α/2  = 0,05
and degree of freedom  df = n - 1  df = 40
From t student table we get:
tα/2  =  1,6839
Then:
t(α/2)* s/√n  =  1,6839* 3,41/√40
t(α/2)* s/√n  =  0,908
8,73 - 0,908 Â = Â 7,822
8,73 + 0,908 Â = 9,638
CI (90%) Â = Â ( 7,822 Â ; Â 9,638 )
Difference between upper and lower cut-offs points is:
Δ = 1,816