Respuesta :
Answer:
The  simple harmonic wave function is  [tex]y(x,t) = 0.125 sin (5.712 \ m^{-1} \ x - 0.6808 \ s^{-1}\ t )[/tex]
Explanation:
Generally a sine wave is mathematically represented as
   [tex] y(x,t) =  A sin (k x - w t )[/tex]
Here  A is the amplitude which is mathematically represented as
   [tex]A =  \frac{Z}{2}[/tex]
substituting  0.25 m for  Z  we have  that Â
    [tex]A =  \frac{0.25}{2}[/tex] Â
     [tex]A = 0.125[/tex]     Â
k  is the wave number which is mathematically represented as
     [tex] k =  \frac{2 \pi}{\lambda}[/tex] Â
substituting 1.1 m for (wavelength ) Â we have
    [tex] k =  \frac{2* 3,142}{1.1}[/tex]
=> Â Â Â [tex] k = Â 5.712[/tex]
w  is the angular frequency which is mathematically represented as  Â
     [tex] w =  \frac{2 \pi}{T}[/tex]
Here  T is the period which is mathematically represented as
      [tex] T =  \frac {t}{n}[/tex]
substituting  13 wave pass  for  n and  [tex] t = 2 \ minutes =  120 \  s [/tex] for t
     [tex] T =  \frac {120}{13}[/tex]
     [tex] T =  9.230[/tex]
So
     [tex] w =  \frac{2 * 3.142 }{ 9.230}[/tex]
    [tex] w =  0.6808 \  s^{-1}[/tex]
So
  [tex]y(x,t) = 0.125 sin (5.712 \ m^{-1} \ x - 0.6808 \ s^{-1}\ t )[/tex]
   Â
  Â