Respuesta :
Answer:
a)
A(0.1)^4 + B(0.1)^3 + C(0.1)^2 + D(0.1) + E = 82.9619 Â ----------1
A(0.2)^4 + B(0.2)^3 + C(0.2)^2 + D(0.2) + E = 38.7504 -------2
A(0.7)^4 + B(0.7)^3 + C(0.7)^2 + D(0.7) + E = 1.7819 Â ----------3
A(0.8)^4 + B(0.8)^3 + C(0.8)^2 + D(0.8) + E = 1.9824 ----------4
A(0.9)^4 + B(0.9)^3 + C(0.9)^2 + D(0.9) + E = 0.7859 ----------5
b) Â y = 519x^4 - 1630x^3 + 1844x^2 - 889x + 155
c) Â 0.1875
Step-by-step explanation:
a)
Let y = Ax^4 + Bx^3 + Cx^2 + Dx + E
Setting up the problem as a system of linear equations
when x=(10%)=0.1, y = 82.9619
therefore
A(0.1)^4 + B(0.1)^3 + C(0.1)^2 + D(0.1) + E = 82.9619 Â ----------1
when x=(20%)=0.2, y = 38.7504
A(0.2)^4 + B(0.2)^3 + C(0.2)^2 + D(0.2) + E = 38.7504 -------2
when x=(70%)=0.7, y = 1.7819
A(0.7)^4 + B(0.7)^3 + C(0.7)^2 + D(0.7) + E = 1.7819 Â ----------3
when x=(80%)=0.8, y = 1.9824
A(0.8)^4 + B(0.8)^3 + C(0.8)^2 + D(0.8) + E = 1.9824 ----------4
when x=(90%)=0.9, y = 0.7859
A(0.9)^4 + B(0.9)^3 + C(0.9)^2 + D(0.9) + E = 0.7859 ----------5
b)
Find the quartic polynomial that goes through these data points
Now to find the values ( A,B,C,D,E)
[MATRIX]
â•‘Aâ•‘ Â Â Â Â â•‘ Â (0.1)^4 Â (0.1)^3 Â Â (0.1)^2 Â (0.1) Â Â 1 Â Â â•‘^-1 Â Â â•‘ 82.9619 Â â•‘
â•‘Bâ•‘ Â Â Â Â â•‘ Â Â (0.2)^4 Â (0.2)^3 Â (0.2)^2 Â (0.2) 1 Â â•‘ Â Â Â Â â•‘ 38.7504 â•‘
â•‘Câ•‘ Â Â = Â â•‘ Â Â (0.7)^4 Â (0.7)^3 Â (0.7)^2 Â (0.7) Â 1 Â â•‘ Â Â Â Â â•‘ 1.7819 Â Â â•‘
â•‘Dâ•‘ Â Â Â Â â•‘ Â Â (0.8)^4 Â (0.8)^3 Â (0.8)^2 Â (0.8) Â 1 Â â•‘ Â Â Â Â â•‘ 1.9824 Â Â â•‘
â•‘Eâ•‘ Â Â Â Â â•‘ Â Â (0.9)^4 Â (0.9)^3 Â (0.9)^2 Â (0.9) Â 1 Â â•‘ Â Â Â Â â•‘ 0.7859 Â Â â•‘
â•‘Aâ•‘ Â Â Â â•‘ Â 29.7619 Â -47.619 Â 166.667 Â -238.095 Â 89.2857 â•‘ â•‘ 82.9619â•‘
â•‘Bâ•‘ Â Â Â â•‘ Â -77.381 Â 119.048 Â -333.333 Â 452.381 -160.714 Â Â Â â•‘ â•‘ 38.7504â•‘
â•‘Câ•‘ Â = Â â•‘ Â 71.131 Â -102.381 Â 208.333 Â -269.048 91.9643 Â Â Â â•‘ â•‘ 1.7819 Â Â â•‘
â•‘Dâ•‘ Â Â Â â•‘ Â -26.369 33.0952 Â -41.6667 Â 52.619 Â -17.6786 Â Â â•‘ â•‘ 1.9824 Â â•‘
â•‘Eâ•‘ Â Â Â â•‘ Â 3.00 Â Â Â -2.4 Â Â Â Â -2.4 Â Â Â Â -3.00 Â Â Â Â Â -1.00 Â Â Â â•‘ Â â•‘ 0.7859 Â â•‘
â•‘Aâ•‘ Â Â Â â•‘ 519 Â â•‘
â•‘Bâ•‘ Â Â Â â•‘ -1630â•‘
â•‘Câ•‘ Â = Â â•‘ 1844 â•‘ , Â Â Â Â y = 519x^4 - 1630x^3 + 1844x^2 - 889x + 155
â•‘Dâ•‘ Â Â Â â•‘ -889 â•‘
â•‘Eâ•‘ Â Â Â â•‘ 155 Â Â â•‘
c)
approximate the density 50% of the way out of the sun
so at 50% (0.5) x=0.5
we substitute
y = 519(0.5)^4 - 1630(0.5)^3 + 1844(0.5)^2 - 889(0.5) + 155
= 0.1875