
Respuesta :
Answer:
(a) See below
(b) r = 0.9879 Â
(c) y = -12.629 + 0.0654x
(d) See below
(e) No.
Step-by-step explanation:
(a) Plot the data
I used Excel to plot your data and got the graph in Fig 1 below.
(b) Correlation coefficient
One formula for the correlation coefficient is Â
[tex]r = \dfrac{\sum{xy} - \sum{x} \sum{y}}{\sqrt{\left [n\sum{x}^{2}-\left (\sum{x}\right )^{2}\right]\left [n\sum{y}^{2} -\left (\sum{y}\right )^{2}\right]}}[/tex]
The calculation is not difficult, but it is tedious.
(i) Calculate the intermediate numbers
We can display them in a table.
  x       y       xy            x²       y²  Â
  36    0.22        7.92        1296      0.05
  67     0.62       42.21        4489      0.40
  93     1.00       93.00      20164      3.46
 433     11.8      5699.4      233289     139.24
 887    29.3     25989.1      786769    858.49
1785 Â Â Â 82.0 Â Â Â Â 146370 Â Â Â Â Â 3186225 Â Â Â 6724
2797 Â Â 163.0 Â Â Â Â 455911 Â Â Â Â 7823209 Â Â 26569
3675 Â 248.0 Â Â Â Â 911400 Â Â Â Â 13505625 Â 61504 Â Â Â Â
9965 Â 537.81 Â Â 1545776.75 Â 25569715 Â 95799.63
(ii) Calculate the correlation coefficient
[tex]r = \dfrac{\sum{xy} - \sum{x} \sum{y}}{\sqrt{\left [n\sum{x}^{2}-\left (\sum{x}\right )^{2}\right]\left [n\sum{y}^{2} -\left (\sum{y}\right )^{2}\right]}}\\\\= \dfrac{9\times 1545776.75 - 9965\times 537.81}{\sqrt{[9\times 25569715 -9965^{2}][9\times 95799.63 - 537.81^{2}]}} \approx \mathbf{0.9879}[/tex]
(c) Regression line
The equation for the regression line is
y = a + bx where
[tex]a = \dfrac{\sum y \sum x^{2} - \sum x \sum xy}{n\sum x^{2}- \left (\sum x\right )^{2}}\\\\= \dfrac{537.81\times 25569715 - 9965 \times 1545776.75}{9\times 25569715 - 9965^{2}} \approx \mathbf{-12.629}\\\\b = \dfrac{n \sum xy - \sum x \sum y}{n\sum x^{2}- \left (\sum x\right )^{2}} - \dfrac{9\times 1545776.75 - 9965 \times 537.81}{9\times 25569715 - 9965^{2}} \approx\mathbf{0.0654}\\\\\\\text{The equation for the regression line is $\large \boxed{\mathbf{y = -12.629 + 0.0654x}}$}[/tex]
(d) Residuals
Insert the values of x into the regression equation to get the estimated values of y.
Then take the difference between the actual and estimated values to get the residuals.
  x       y    Estimated  Residual
  36     0.22     -10         10
  67     0.62      -8          9
  93     1.00      -7          8
  142     1.86      -3          5
 433    11.8       19        -  7
 887   29.3       45        -16 Â
 1785   82.0       104        -22
2797 Â Â 163.0 Â Â Â Â Â Â 170 Â Â Â Â Â Â Â - Â 7
3675 Â 248.0 Â Â Â Â Â Â 228 Â Â Â Â Â Â Â 20
(e) Suitability of regression line
A linear model would have the residuals scattered randomly above and below a horizontal line.
Instead, they appear to lie along a parabola (Fig. 2).
This suggests that linear regression is not a good model for the data.

