Answer:
a) e) H0 : µ ≤ 230 versus Ha : µ > 230
b) [tex]t=\frac{230.7-230}{\frac{41.8}{\sqrt{177}}}=0.223[/tex] Â Â
c. 0.223
c) [tex]p_v =P(t_{(176)}>0.223)=0.4118[/tex] Â
d. 0.4118
Step-by-step explanation:
Information given Â
[tex]\bar X=230.7[/tex] represent the sample mean
[tex]s=41.8[/tex] represent the sample standard deviation
[tex]n=177[/tex] sample size Â
[tex]\mu_o =230[/tex] represent the value to verify
t would represent the statistic Â
[tex]p_v[/tex] represent the p value
Part a
We want to verify if the true mean is higher than 230 yards, the system of hypothesis would be: Â
Null hypothesis:[tex]\mu \leq 230[/tex] Â
Alternative hypothesis:[tex]\mu > 230[/tex] Â
The best option would be:
H0 : µ ≤ 230 versus Ha : µ > 230
Part b
The statistic is given by:
[tex]t=\frac{\bar X-\mu_o}{\frac{s}{\sqrt{n}}}[/tex] Â (1) Â
Replacing the info given we got:
[tex]t=\frac{230.7-230}{\frac{41.8}{\sqrt{177}}}=0.223[/tex] Â Â
Part c
The degrees of freedom are:
[tex]df=n-1=177-1=176[/tex] Â
The p value would be given by:
[tex]p_v =P(t_{(176)}>0.223)=0.4118[/tex] Â
d. 0.4118