Five liters of a gas is known to contain 0.965 mol. If the amount of gas is increased to 1.80 mol, what new volume will result? The temperature and pressure remain the same.

Relax

Respuesta :

Answer:

New volume of the gas will be 9.33 L.

Explanation:

Let's assume the gas behaves ideally.

So we can write,    [tex]\frac{P_{1}V_{1}}{P_{2}V_{2}}=\frac{n_{1}RT_{1}}{n_{2}RT_{2}}[/tex]

where [tex]P_{1}[/tex] and [tex]P_{2}[/tex] represents initial and final pressure of gas respectively.

           [tex]V_{1}[/tex] and [tex]V_{2}[/tex] represents initial and final volume of gas respectively

           [tex]n_{1}[/tex] and [tex]n_{2}[/tex] represents initial and final number of moles of gas respectively.

           [tex]T_{1}[/tex] and [tex]T_{2}[/tex] represents initial and final temperature (in kelvin scale) of gas respectively.

            R is gas constant.

Here  [tex]P_{1}=P_{2}[/tex] , [tex]T_{1}=T_{2}[/tex] , [tex]V_{1}=5.00L[/tex] , [tex]n_{1}=0.965mol[/tex] and [tex]n_{2}=1.80mol[/tex]

So  [tex]V_{2}=\frac{V_{1}n_{2}}{n_{1}}[/tex] = [tex]\frac{(5.00L)\times (1.80mol)}{(0.965mol)}[/tex]  =  9.33 L

Hence new volume of the gas will be 9.33 L.