
Answer:
Dimensions of the poster are:
w  =  18 in
Y Â = Â 36 in
Step-by-step explanation:
Print area of the rectangular poster is 512 in²
Let call "x"  and  "y"  dimensions for the print area of the poster then
A(p) Â = Print area of the poster = x*y
512 = x*y   ⇒  y  = 512/x
Total area of the poster is:
A(t) = ( y + 4 ) * ( x + 2 )
A(t) = y*x +2*y +4*x + 8   And as  y = 512/x
Total area of the poster as a function of x is:
A(x) Â =( 512/x)*x + 2* (512/x) + 4*x + 8
A(x)  = 512  + 1024/x + 4*x + 8   ⇒  A(x)  = 520  + 1024/x + 4*x
Taking derivatives on both sides of the equation we get:
A´(x)  =  - 1024/x² + 4
A´(x)  = 0     ⇒   - 1024 /x²  = -4   ⇒  4*x² = 1024
x² = 1024/4   ⇒  x²  = 256
x = 16 inches
And  y  =  512/x   ⇒  y = 512/16   ⇒ y = 32 inches
So we found x  and  y dimensions of the print area, then the dimensions of the poster are:
w = x + 2   ⇒  w  = 16  + 2  w  = 18 in
Y  = y + 4  ⇒  Y  = 32 + 4  Y  =  36 in