
Respuesta :
The local convection heat transfer coefficient at 1 m from the leading edge is  [tex]0.44 \frac{W}{m^{2} \times K}[/tex] ,  the average convection heat transfer coefficient over the entire plate is  [tex]0.293 \frac{W}{m^{2} \times K}[/tex]and the total heat flux transfer to the plate is [tex]61.6 KJ[/tex].
Explanation:
It is case of heat and mass transfer in which due to temperature difference between gas  and surface. Further temperature  boundary layer will developed on flat plate in longitudinal direction. Â
Hot carbon dioxide exhaust gas
physical properties
[tex]r= 1.05 \frac{kg}{m^{3}}[/tex]
[tex]c_p = 1.02 \frac{kJ}{Kg \times K}[/tex]
[tex]m= 231 \times 10^{7} \frac{N \times s }{m^2}[/tex]
Ï… = [tex]21.8 \times 10^{6} \frac{m^2}{s}[/tex]
[tex]k = 32.5 \times 10^{3} \frac{W}{m \times K}[/tex]
[tex]\alpha = 30.1 \times 10^{6} \frac{m^{2}}{s}[/tex]
[tex]Pr = 0.725[/tex]
Apart from these other data arr given below,
[tex]v= 3 \frac{m}{s} \\ p= 1 atm \\ L_c = 1.5m \\T_g= 220 C \\ T_s = 80 C[/tex]
To find the local convection heat transfer coefficient at 1 m from the leading edge, we use correlation used for laminar flow over flat plate,
[tex]Nu = \frac{ h \times L }{k} = 0.332 \times (Re^{\frac{1}{2} }) \times (Pr^{\frac{1}{3} })[/tex]
where h= Average heat transfer coefficient
      L= Length of a plate
      k= Thermal Conductivity of carbon dioxide
      Re = Reynold's Number
      Pr  = Prandtle Number
(a) Convection heat transfer coefficient at 1 m from the leading edge
  is referred as local convection heat transfer coefficient.
 Â
  To find convection heat transfer coefficient at 1 m from leading edge,
 [tex]Nu = \frac{ h_local \times L }{k} = 0.332 \times (Re^{\frac{1}{2} }) \times (Pr^{\frac{1}{3} })[/tex]
 Here, first we have to find Re and Pr,
  [tex]Re = \frac{r \times v \times L}{m}[/tex]
  [tex]Re = \frac{1.0594 \times 3 \times 1}{231 \times 10^{7}}[/tex]
  [tex]Re = 20.63 \times 10^{-10}[/tex]
  Pr number is take from physical property data and Pr is 0.725.
  Putting value of Re and Pr in main equation,
  we get
  [tex]Nu = \frac{ h_local \times 1 }{32.5 \times 10^{3}} = 0.332 \times ( (20.63 \times 10^{-10})^{\frac{1}{2} }) \times (0.725^{\frac{1}{3} })[/tex]
  [tex]h_local = 32.5 \times 10^{3} \times 0.332 \times ( (20.63 \times 10^{-10})^{\frac{1}{2} }) \times (0.725^{\frac{1}{3} })[/tex]
  [tex]h_local = 0.44 \frac{W}{m^{2} \times K}[/tex]
(b) Â To find average convection heat transfer coefficient,
   it can be find out as case (a), only difference is that instead of L=1 m,     L=1.5 m would come, Â
  Therefore,
  [tex]Nu = \frac{ h \times 1.5 }{32.5 \times 10^{3}} = 0.332 \times ( (20.63 \times 10^{-10})^{\frac{1}{2} }) \times (0.725^{\frac{1}{3} })[/tex]
  Finally,
   [tex]h = \frac{0.44}{1.5}[/tex]
   [tex]h = 0.293 \frac{W}{m^{2} \times K}[/tex]
(C) Total heat flux transfer to the plate is found out by,
   [tex]Q = h \times (T_g - T_s)[/tex]
   [tex]Q = 0.293 \times (220-80) \\ Q= 0.293 \times 140 \\ Q= 61.6 KJ[/tex]
  Â
  Â
 Â
 Â
  Â
 Â
  Â
 Â
 Â
Â
 Â
 Â
 Â
 Â