
Respuesta :
Answer:
C) AB = BC = CD = DA = 2β5
Step-by-step explanation:
Given
A(1, 4)
B(3, 0)
C(1, β4)
D(β1, 0)
We get the distance between point A and point B
AB = β((3-1)Β²+(0-4)Β²) = β20 = 2β5
BC = β((1-3)Β²+(-4-0)Β²) = β20 = 2β5
CD = β((-1-1)Β²+(0-(-4))Β²) = β20 = 2β5
DA = β((1-(-1))Β²+(4-0)Β²) = β20 = 2β5
C) AB = BC = CD = DA = 2β5
Answer:
C) AB = BC = CD = DA = 2β5
Corrected question:
Consider a shape with vertices A(1, 4), B(3, 0), C(1, β4), and D(β1, 0) on the coordinate plane. 1) Which proves that the shape given by the vertices is a rhombus? A) AB = BC = CD = DA = 10 B) AB = BC = CD = DA = 15 C) AB = BC = CD = DA = 2β5 D) AB = BC = CD = DA = 3β5
Step-by-step explanation:
Given;
Vertices
A(1,4)
B(3,0)
C(1,-4)
D(-1,0)
We need to determine the Length of sides;
AB,BC,CD,DA
Length = β((βx)^2 + (βy)^2)
For
AB = β((3-1)^2 + (0-4)^2) = β(4+16) = β20 = 2β5
BC = β((1-3)^2 + (-4-0)^2) = β(4+16) = β20 = 2β5
CD = β((-1-1)^2 + (0--4)^2) = β(4+16) = β20 = 2β5
DA = β((1--1)^2 + (4-0)^2) = β(4+16) = β20 = 2β5
Which shows that;
AB=BC=CD=DA=2β5
For a rhombus, all sides are equal.
Therefore, AB=BC=CD=DA=2β5, proves that the shape given by the vertices is a rhombus.