
Answer: Equilibrium concentration of [tex]CO=0.014M[/tex] Â
Equilibrium concentration of [tex]Cl_2=0.037M[/tex] Â
Equilibrium concentration of [tex]COCl_2=0.135M[/tex] Â
Explanation:
Initial concentration of [tex]CO=0.1490M[/tex] Â
Initial concentration of [tex]Cl_2=0.172M[/tex] Â
The given balanced equilibrium reaction is,
               [tex]CO(g)+Cl_2(g)\rightleftharpoons COCl_2(g)[/tex]
Initial conc. Â Â Â Â 0.1490 M Â Â Â Â 0.172 Â Â Â Â Â Â Â Â 0
At eqm. conc. Â Â (0.1490-x) M Â (0.172-x) M Â (x) M
The expression for equilibrium constant for this reaction will be,
[tex]K_c=\frac{[COCl_2]}{[Cl_2]\times [CO]}[/tex]
[tex]255=\frac{x}{(0.1490-x)\times (0.172-x)}[/tex]
[tex]x=0.135[/tex]
Equilibrium concentration of [tex]CO=(0.1490-x)M= (0.1490-0.135)=0.014M[/tex] Â
Equilibrium concentration of [tex]Cl_2=(0.172-x)M= (0.172-0.135)=0.037M[/tex] Â
Equilibrium concentration of [tex]COCl_2=0.135M[/tex] Â