Suppose a 250.0 mL flask is filled with 1.3 mol of I2 and 1.0 mol of HI. The following reaction becomes possible:
H2 (g) +I2 (g) ⇆ 2HI (g)
The equilibrium constant for this reaction is 0.983 at the temperature of the flask.
Calculate the equilibrium molarity of HI. Round your answer to two decimal places.

Relax

Respuesta :

Answer:

2.27 M

Explanation:

Given that :

volume = 250.0 mL = 0.250 L

Number of moles of [tex]I_2[/tex] = 1.3 mol

Number of moles of [tex]HI[/tex] = 1.0 mole

Initial concentration of  [tex]I_2[/tex] = [tex]\frac{numbers of mole}{volume}[/tex]

= [tex]\frac{1.3}{0.250}[/tex]

= 5.20 M

Initial concentration of  [tex]HI[/tex] = [tex]\frac{numbers of mole}{volume}[/tex]

= [tex]\frac{1.0}{0.250}[/tex]

= 4.0 M

Equation of the reaction is represented as:

[tex]H_2}_{(g)} + I_2_{(g)}----->2HI_{(g)}[/tex]

The I.C.E Table is as follows:

                            [tex]H_2}_{(g)}[/tex]    +        [tex]I_2_{(g)}[/tex]     ----->       [tex]2HI_{(g)}[/tex]

Initial(M)                  0.0              5.20                   4.0  

Change                    +x               +x                       - 2x

Equilibrium(M)           x             5.20+x                 4 - 2x

[tex]K = \frac{[HI]^2}{[H_2][I_2]}[/tex]

[tex]K = \frac{[4-2x]^2}{[x][5.20+x]}[/tex]              where K = 0.983

[tex]0.983 = \frac{(4-2x)^2}{(5.20x+x^2)}[/tex]

[tex]0.983(5.20x+x^2) = (4-2x)^2[/tex]

[tex]5.1116x + 0.983x^2=16-16x+4x^2[/tex]

[tex]5.1116x +16x + 0.983x^2 -4x^2 -16 =0[/tex]

[tex]21.1116x - 3.017x^2 -16 =0[/tex]

multiplying through by (-) and rearranging in the order of quadratic equation; we have:

[tex]3.017x^2 -21.1116x +16[/tex]

[tex]x^2 - 6.9975+5.30 =0[/tex]

using the quadratic formula:

= [tex]\frac{-b \pm\sqrt{b^2-4ac} }{2a}[/tex]

= [tex]\frac{-(-6.9975) \pm\sqrt{(-6.9975)^2-4(1)(5.3)} }{2(1)}[/tex]

=  [tex]\frac{-(-6.9975) + \sqrt{(-6.9975)^2-4(1)(5.3)} }{2(1)}[/tex]   OR  [tex]\frac{-(-6.9975) - \sqrt{(-6.9975)^2-4(1)(5.3)} }{2(1)}[/tex]

= 6.133      OR      0.864

since 6.133 is greater than K value then it is void, so we go by the lesser value which is 0.864

so x = 0.864 M

The equilibrium molarity of HI = (4.0- 2x)

= 4.0 - 2(0.864)

= 4.0 - 1.728

= 2.272 M

= 2.27 M to two decimal places