
Respuesta :
Answer:
0.277 s
Explanation:
We first find the height of the incline by considering the potential energy of the solid sphere = kinetic energy of solid sphere + rotational kinetic energy of solid sphere
mgh = 1/2mv² + 1/2Iϲ Ā and Ļ = v/r where v = speed of centre of mass and r = radius of sphere. I = rotational inertia of solid sphere = 2/5mr²
mgh = 1/2mv² + 1/2I(v/r)² = 1/2mv² + 1/2 à 2/5mr²à v²/r²
mgh = 1/2mv² + 1/5mv² = 7mv²/10
h = 7v²/10g
The torque on the sphere Ļ = Iα = mgRsinĪø, which is the torque of the horizontal component of the weight of the sphere about the centre of mass of the sphere.
2/5mR²α = mgRsinθ
Rα = 5gsinθ/2 = a which is the tangential acceleration of the centre of mass of the sphere.
So, the net acceleration, aā moving up the incline is a - gsinĪø = 5gsinĪø/2 - gsinĪø = 3gsinĪø/2.
Using s = ut + 1/2at², we find the time it takes the sphere to roll up the incline. s = hsin35 = 7v²sin35/10g = 7 à 13sin35/(10 à 32) = 2.12 ft,  u = v = 13 ft/s and a = 3gsinθ/2 = (3 à 32sin35°)/2 = 27.53 ft/s²
So, s = ut + 1/2at²
2.12 = 13t + 27.53t²/2 = 13t + 13.77t²
13.77t² + 13t - 2.12 = 0
Using the quadratic formula,
t = [-13 ±ā(13² - 4 Ć 13.77 Ć 2.12)]/(2 Ć 13.77) = [-13 ±ā(169 + 116.89)]/(27.54) = [-13 ±ā(285.89)]/(27.54) = [-13 ± 16]/27.54
t = (-13 - 16)/27.54 or (-13 + 16)/27.54
Ā = -29/27.54 or 3/27.54
Ā = -1.05 or 0.109 s
We take the positive answer, so it takes 0.109 s to go up the incline.
So, the net acceleration, aā moving down the incline is a + gsinĪø = 5gsinĪø/2 + gsinĪø = 7gsinĪø/2.
Using v² = u² + 2as, where v is the velocity at the top of the incline,
v² = 13² + 2 Ć -27.53 Ć 2.12 = 52.2728 ā v = 7.23 ft/s
Using s = ut + 1/2at², we find the time it takes the sphere to roll up the incline. s = hsin35 = 7v²sin35/10g = 7 à 13sin35/(10 à 32) = 2.12 ft,  u = v = 7.23 ft/s and a = 7gsinθ/2 = (7 à 32sin35°)/2 = 64.24 ft/s²
So, s = ut + 1/2at²
2.12 = 7.23t + 64.24t²/2 = 7.23t + 32.12t²
32.12t² + 7.23t - 2.12 = 0
Using the quadratic formula,
t = [-7.23 ±ā(7.23² - 4 Ć 32.12 Ć -2.12)]/(2 Ć 32.12) = [-7.23 ±ā(52.2729 + 272.3776)]/(64.24) = [-7.23 ±ā(324.6505)]/(64.24) = [-7.23 ± 18.02]/64.24
t = (-7.23 - 18.02)/64.24 or (-7.23 + 18.02)/64.24
Ā = -25.25/64.24 or 10.79/64.24
Ā = -0.393 or 0.168 s
We take the positive answer, so it takes 0.168 s Ā to go down the incline.
So the time it takes to return to the bottom of the incline = time to reach top of incline + time to go down the incline. = 0.109 s + 0.168 s = 0.277 s