
Answer:
a) 90 kJ
b) 230.26 kJ
Explanation:
The pressure at the first point  [tex]P_{1}[/tex]= 10 bar —> 10 x 102 = 1020 kPa
The volume at the first point  [tex]V_{1}[/tex]= 0.1 m^3 Â
The pressure at the second point [tex]P_{2}[/tex]= 1 bar —> 1 x 102 = 102 kPa
The volume at the second point [tex]V_{2}[/tex] = 1 m^3 Â
Process A.
constant volume V = C from point (1) to P = 10 bar.
Constant pressure P = C to the point (2). Â
Process B.
The relation of the process is PV = C Â
Required Â
For process A & B
(a) Sketch the process on P-V coordinates
(b) Evaluate the work W in kJ. Â
Assumption Â
Quasi-equilibrium process
Kinetic and potential effect can be ignored. Â
Solution
For process A.
V=C Â
There is no change in volume then
[tex]W_{a(1)}= 0\\P=10^{2}[/tex]
The work is defined by Â
[tex]W_{a(2)}=\int\limits^V_V {P} \, dV[/tex]
[tex]W_{A(2)} =[/tex]â•‘[tex]10^{2}[/tex] Vâ•‘limit 1--0.1
[tex]W_{A(2)} =[/tex] 90 kJ
Process B Â
PV=C Â
By substituting with point (1) C = 10^2 x 1= 10^2 Â
The work is defined by
[tex]W_{b}=\int\limits^V_V {P} \, dV\\P=10^{2} V^{-1}\\ W_{b}=\int\limits^V_V {10^{2} V^{-1}} \, dV\\\\[/tex]
[tex]W_{A(2)} =[/tex] â•‘[tex]10^{2}[/tex] ln(V)â•‘limit 1--0.1
     =230.26 kJ