1. An economy has three sectors producing products Product 1, Product 2, and Prod- uct 3. • To produce 1 unit of Product 1 requires 0.20 units of Product 1, 0.15 units of Product 2, and 0.10 units of Product 3. • To product 1 unit of Product 2 it takes 0.14 units of Product 1, 0.05 units of Product 2, and 0.12 units of Product 3. • To produce 1 unit of Product 3 it takes 0.14 units of Product 1, and 0.08 units of Product 2. (a) What should the total production be set at in order to satisfy an external de- mand of 100 units of Product 1, 120 units of Product 2, and 150 units of Product 3? (b) Individually interpret each entry in the third column of (I āˆ’ M)āˆ’1.

Relax

Respuesta :

Answer:

Part a: In order to meet the external demand of 100 units of Product 1, 120 units of Product 2 and 150 units of Product 3, the total production of 147.06 units of Product 1, 171.27 units of Product 2 and 184.29 units of Product 3 are to be produced.

Part b: The Ā individual entry of 3rd column (I-M)^-1 signifies the role of the demand of 3rd product for total estimation of product 1, product 2 and product 3 respectively.

Explanation:

The matrix form of the equation is given as

[tex]\left[\begin{array}{c}P_1\\P_2\\P_3\end{array}\right] =\left[\begin{array}{ccc}0.02&.0.15&0.10\\0.14&0.05&0.12\\0.14&0.08&0\end{array}\right] \left[\begin{array}{c}P_1\\P_2\\P_3\end{array}\right] +\left[\begin{array}{c}P_1\\P_2\\P_3\end{array}\right] _{external}[/tex]

where

[tex]\left[\begin{array}{c}P_1\\P_2\\P_3\end{array}\right] _{external}=\left[\begin{array}{c}100\\120\\150\end{array}\right][/tex]

so the equation now becomes

[tex]\left[\begin{array}{c}P_1\\P_2\\P_3\end{array}\right] =\left[\begin{array}{ccc}0.02&.0.15&0.10\\0.14&0.05&0.12\\0.14&0.08&0\end{array}\right] \left[\begin{array}{c}P_1\\P_2\\P_3\end{array}\right] +\left[\begin{array}{c}100\\120\\150\end{array}\right][/tex]

From here it is given that

[tex]P=MP+\Delta[/tex]

Or

[tex]P-MP=\Delta\\P(I-M)=\Delta\\P=(I-M)^{-1}\Delta[/tex]

Here

[tex]P=\left[\begin{array}{c}P_1\\P_2\\P_3\end{array}\right] \\M=\left[\begin{array}{ccc}0.02&.0.15&0.10\\0.14&0.05&0.12\\0.14&0.08&0\end{array}\right] \\\Delta=\left[\begin{array}{c}100\\120\\150\end{array}\right][/tex]

So now I-M is given as

[tex]\\I-M=\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right] -\left[\begin{array}{ccc}0.02&0.15&0.10\\0.14&0.05&0.12\\0.14&0.08&0\end{array}\right] \\ I-M=\left[\begin{array}{ccc}1-0.02&0-0.15&0-0.10\\0-0.14&1-0.05&0-0.12\\0-0.14&0-0.08&1-0\end{array}\right] \\I-M=\left[\begin{array}{ccc}0.98&-0.15&-0.10\\-0.14&0.95&-0.12\\-0.14&-0.08&1\end{array}\right][/tex]

Now the inverse is calculated as

[tex](I-M)^{-1}=\frac{1}{det(I-M)}Adj(I-M)[/tex]

So the adjoint of (I-M) is calculated as

[tex]adj(I-M)=adj(\left[\begin{array}{ccc}0.98&-0.15&-0.10\\-0.14&0.95&-0.12\\-0.14&-0.08&1\end{array}\right])\\adj(I-M)=\left[\begin{array}{ccc}0.9404&0.1580 & 0.1130\\0.1568&0.9660& 0.1316\\0.1442 &0.0994 & 0.9100\end{array}\right]\\[/tex]

Also the determinant is given as

[tex]|I-M|=\left|\begin{array}{ccc}0.98&-0.15&-0.10\\-0.14&0.95&-0.12\\-0.14&-0.08&1\end{array}\right|\\|I-M|=0.8837[/tex]

So the inverse is given as

[tex](I-M)^{-1}=\frac{1}{det(I-M)}Adj(I-M)[/tex]

[tex](I-M)^{-1}=\frac{1}{0.8837}\left[\begin{array}{ccc}0.9404&0.1580 & 0.1130\\0.1568&0.9660& 0.1316\\0.1442 &0.0994 & 0.9100\end{array}\right]\\\\(I-M)^{-1}=\left[\begin{array}{ccc}1.0642 & 0.1788 & 0.1279\\ 0.1774 &1.0932 & 0.1489\\ 0.1632 & 0.1125 & 1.0298\end{array}\right]\\[/tex]

So the total demand of each product to meet the external demand is given as

[tex]P=(I-M)^{-1}\Delta[/tex]

[tex]\left[\begin{array}{c}P_1\\P_2\\P_3\end{array}\right]=\left[\begin{array}{ccc}1.0642 & 0.1788 & 0.1279\\ 0.1774 &1.0932 & 0.1489\\ 0.1632 & 0.1125 & 1.0298\end{array}\right]\left[\begin{array}{c}100\\120\\150\end{array}\right]\\\\\left[\begin{array}{c}P_1\\P_2\\P_3\end{array}\right]=\left[\begin{array}{c}147.06\\ 171.27 \\184.29\end{array}\right]\\[/tex]

So in order to meet the external demand of 100 units of Product 1, 120 units of Product 2 and 150 units of Product 3, the total production of 147.06 units of Product 1, 171.27 units of Product 2 and 184.29 units of Product 3 are to be produced.

Part b

The Ā individual entry of 3rd column (I-M)^-1 signifies the role of the demand of 3rd product for total estimation of product 1, product 2 and product 3 respectively.

Answer: Check the attached for the solution

Explanation:

Ver imagen lukman4real
Ver imagen lukman4real