In a lab experiment a light flexible string is wrapped around a solid cylinder with mass M = 9.50 kg and radius R. The cylinder rotates with negligible friction about a stationary horizontal axis. A mass m = 3.00kg is tied at the free end of the string and release and the mass moves downward. Find the magnitude of the acceleration of the object of mass m.

Relax

Respuesta :

Answer:[tex]3.79 m/s^2[/tex]

Explanation:

Given

Mass [tex]M=9.5 kg[/tex]

[tex]m=3 kg[/tex]

Net Force is equivalent to [tex]\sum F=ma [/tex]

with tension T in the string    

For mass [tex]m[/tex]

[tex]mg-T=ma[/tex]

[tex]T=mg-ma--------1[/tex]

For cylinder

[tex]T\cdot R=I\times \alpha [/tex]

I for solid cylinder is [tex]\frac{2}{5}MR^2 , and \alpha =\frac{a}{R}[/tex]

thus [tex]T=\frac{Ma}{2}----2[/tex]

Substitute the value of T we get

[tex]\frac{Ma}{2}=mg-ma[/tex]

[tex]a(\frac{M}{2}+m)=mg[/tex]

[tex]a=\frac{mg}{\frac{M}{2}+m}[/tex]

[tex]a=3.79 m/s^2[/tex]

Ver imagen nuuk