
Respuesta :
Answer:
The fastest object is the sphere, so it is the winner
Explanation:
To know which object will arrive faster down, let's look for the velocity of the center of mass of each object. Let's use the concept of mechanical energy
Highest point
   Em₀ = U = mg y
   Â
Lowest point
   [tex]Em_{f}[/tex]= K = [tex]K_{rot}[/tex] + [tex]K_{cm}[/tex] = ½ I w² + ½ m [tex]v_{cm}[/tex]²
Angular velocity is related to linear velocity.
    v = w r
    w = v / r
    [tex]Em_{f}[/tex] = ½ I [tex]v_{cm}[/tex]²/r² + ½ m [tex]v_{cm}[/tex]²
    [tex]Em_{f}[/tex] = ½ (I / r² + m) [tex]v_{cm}[/tex]²
Energy is conserved
   Em₀ =  [tex]Em_{f}[/tex]
   mg y = ½ (I / r² + m) [tex]v_{cm}[/tex]²
   [tex]v_{cm}[/tex] = √2 g y / (I / mr² +1)
With this expression we can know which object arrives as a higher speed, therefore invests less time and is the winner. Let's calculate the speed of the center of mass of each
Ring
    I = m r²
   [tex]v_{cm}[/tex] = √ (2 g y / (m r² / mr² + 1))
   [tex]v_{cm}[/tex] = √ (2gy 1/2)
   [tex]v_{cm}[/tex] = (√ 2gy) 0.707
Solid sphere
   I = 2/5 m r²
   [tex]v_{cm}[/tex] = √ (2gy / (2/5 m r² / mr² + 1)
   [tex]v_{cm}[/tex] = √ (2gy / (7/5))
   [tex]v_{cm}[/tex] = √ (2gy 5/7)
   [tex]v_{cm}[/tex] = (√ 2gy) 0.845
Cylinder
   I = ½ m r²
   [tex]v_{cm}[/tex] = √ (2gy / ½ mr² / mr² + 1)
   [tex]v_{cm}[/tex] = √ (2gy / (3/2))
   [tex]v_{cm}[/tex] = √ (2g y 2/3)
   [tex]v_{cm}[/tex] = (√ 2gy) 0.816
The fastest object is the sphere, so it is the winner when descending the ramp