Ammonia gas is compressed from 21°C and 200 kPa to 1000 kPa in an adiabatic compressor with an efficiency of 0.82. Estimate the final temperature, the work required, and the entropy change of the ammonia.

Relax

Respuesta :

Explanation:

It is known that efficiency is denoted by [tex]\eta[/tex].

The given data is as follows.

     [tex]\eta[/tex] = 0.82,       [tex]T_{1}[/tex] = (21 + 273) K = 294 K

     [tex]P_{1}[/tex] = 200 kPa,     [tex]P_{2}[/tex] = 1000 kPa

Therefore, calculate the final temperature as follows.

         [tex]\eta = \frac{T_{2} - T_{1}}{T_{2}}[/tex]    

         0.82 = [tex]\frac{T_{2} - 294 K}{T_{2}}[/tex]    

          [tex]T_{2}[/tex] = 1633 K

Final temperature in degree celsius = [tex](1633 - 273)^{o}C[/tex]

                                                            = [tex]1360^{o}C[/tex]

Now, we will calculate the entropy as follows.

       [tex]\Delta S = nC_{v} ln \frac{T_{2}}{T_{1}} + nR ln \frac{P_{1}}{P_{2}}[/tex]

For 1 mole,  [tex]\Delta S = C_{v} ln \frac{T_{2}}{T_{1}} + R ln \frac{P_{1}}{P_{2}}[/tex]

It is known that for [tex]NH_{3}[/tex] the value of [tex]C_{v}[/tex] = 0.028 kJ/mol.

Therefore, putting the given values into the above formula as follows.

     [tex]\Delta S = C_{v} ln \frac{T_{2}}{T_{1}} + R ln \frac{P_{1}}{P_{2}}[/tex]

                = [tex]0.028 kJ/mol \times ln \frac{1633}{294} + 8.314 \times 10^{-3} kJ \times ln \frac{200}{1000}[/tex]

                = 0.0346 kJ/mol

or,             = 34.6 J/mol             (as 1 kJ = 1000 J)

Therefore, entropy change of ammonia is 34.6 J/mol.