
Respuesta :
Answer:
1.47 s
Explanation:
The equations of uniformly accelerated rectilinear motion of upward (vertical ) are:
y = yâ+ (vâ)*t - (1/2)*g*t²  Equation (1)
vf² = vâ² -2gyâ Equation (2)
vf = vâ -gt  Equation (3)
Where: Â
y: vertical position in meters (m) Â Â
yâ : initial vertical position in meters (m) Â
t : time in seconds (s)
vâ: initial  vertical velocity  in m/s Â
vf: final  vertical velocity  in m/s Â
g: acceleration due to gravity in m/s²
Data
vâ = 14.3 m/s
yâ =0
yâ = 7.8
g = 9.8 m/s²
Calculation of the time it takes for the ball to hit the ground  (t)
when the ball hits the  ground  y = 0
We replace data in the formula (1)
y = yâ +  (vâ)*t - (1/2)*g*t²
0 = 0 +  (14.3)*t - (1/2)* (9.8) *t²
4.9t²= (14.3)*t
We divided both sides of the equation by t
4.9t= (14.3)
t = Â (14.3)/ 4.9
t = 2.92 s
Calculation of the time it takes for the ball to reach the tree branch (tâ)
We replace data in the formula (2)
vf² = vâ² -2gyâ
vf² = (14.3)² -2(9.8)(7.8 )
vf² =204.49 -152.88
vf² = 51.61
[tex]V_{f} = \sqrt{51.61}[/tex]
vf = 7.18 m/s
We replace data in the formula (3)
vf = vâ -gtâ
7.18 = Â 14.3 -(9.8)tâ
(9.8)tâ = 14.3 - 7.18
(9.8)tâ = Â 7.116
tâ = Â 7.116 / (9.8)
tâ = Â 0.72 s
Additional time that will pass before the ball passes the tree branch on the way back (tâ)
tâ = t - 2*tâ
tâ = 2.92 s - 2*(0.72)s
tâ = 2.92 s - 2*(0.72)s
tâ = 1.47 s