
Respuesta :
Answer:
Tâ = 2.8125 N
Explanation:
The equilibrium equation of the moments at the point where string 2 is located on the bar is like this:
âMâ = 0
Mâ = F*d
Where:
âMâ Â : Algebraic sum of moments in the the point (2) of the bar
Mâ : moment in the point 2 ( N*m)
F Â : Force ( N)
d  : Horizontal distance of the force to the point 2 ( N*m
Data
mb = 3 kg : mass of the  bar
mm = 1.5 kg :  mass of the  monkey
L = 3m : lengt of the bar
g = 9.8 m/s²: acceleration due to gravity
Forces acting on the bar
Tâ : Tension in string 1 (vertical upward)
Tâ : Tension in string 2 (vertical upward)
Wb :Weihgt of the bar (vertical downward)
Wm: Weihgt of the monkey  (vertical downward)
Calculation of the weight of the bar (Wb) and of the monkey(Wm)
Wb = m*g = 3 kg*9.8 m/s² = 29.4 N
Wm = m*g = 1.5 kg*9.8 m/s² = 14.7 N
Calculation of the distances  from forces the point 2
dââ = (3-0.6) m = 2.4m  : Distance from T1 to the point 2
dbâ = (3á2) m = 1.5 m : Distance from Wb to the point 2
dmâ = (3á2) m = 1.5 m : Distance from Wm to the point 2
Equilibrium  of moments at the point  2 on the bar
âMâ = 0
Tâ(dââ) - Wb(dbâ) - Wm(dmâ) = 0
Tâ(2.4) -3*(1.5) - 1.5*(1.5) = 0
Tâ(2.4) =3*(1.5) + 1.5*(1.5)
Tâ(2.4) =6.75
Tâ = 6.75 / (2.4)
Tâ = 2.8125 N