contestada

Use your graphing calculator to determine if the equation appears to be an identity or not by graphing the left expression and right expression together. If so, verify the identity. If not, find a counterexample. sec x + cos x = tan x sin x

Relax

Respuesta :

Answer:

[tex](sec x)+(cos x)=(tan x)*(sin x)\\identities\\(sec x)= 1/cos x\\(tan x)=sin x/cos x\\\\and\\(cos x)^{2}+(sin x)^{2}=1\\(cos x)^{2}=1-(sin x)^{2}\\\\(1/cos x )+(cos x) = (sin x)*(sin x)/(cos x)\\ [(1/cos x)+(cos x)]*(cos x)=(sin x)^{2}\\\\1+(cos x)^{2}=(sin x)^{2}\\1+1-(sin x)^{2}=(sin x)^{2}\\2=2*(sin x)^{2}\\2/2=(sin x)^{2}\\1=(sin x)^{2}\\\\This is not true ,so\\(sec x)+(cos x)\neq (tan x)*(sin x)[/tex]