Calculate the solubilities of the following compounds in a 0.02 M solution of barium nitrate using molar concentrations, first ignoring ionic strength and activities.
a. silver iodate
b. barium sulfate
c. Repeat the above calculations using ionic strength and activities.

Relax

Respuesta :

znk

Answer:

a. 1.7 × 10⁻⁴ mol·L⁻¹; b. 5.5 × 10⁻⁹ mol·L⁻¹

c. 2.3 × 10⁻⁴ mol·L⁻¹;    5.5 × 10⁻⁸ mol·L⁻¹

Explanation:

a. Silver iodate

Let s = the molar solubility.  

                     AgIO₃(s) ⇌ Ag⁺(aq) + IO₃⁻(aq); Ksp = 3.0 × 10⁻⁸

E/mol·L⁻¹:                               s               s

[tex]K_{sp} =\text{[Ag$^{+}$][IO$_{3}$^{-}$]} = s\times s =  s^{2} = 3.0\times 10^{-8}\\s = \sqrt{3.0\times 10^{-8}} \text{ mol/L} = 1.7 \times 10^{-4} \text{ mol/L}[/tex]

b. Barium sulfate

                     BaSO₄(s) ⇌ Ba²⁺(aq) + SO₄²⁻(aq); Ksp = 1.1 × 10⁻¹⁰

I/mol·L⁻¹:                                0.02             0

C/mol·L⁻¹:                                 +s              +s

E/mol·L⁻¹:                            0.02 + s          s

[tex]K_{sp} =\text{[Ba$^{2+}$][SO$_{4}$^{2-}$]} = (0.02 + s) \times s \approx  0.02s = 1.1\times 10^{-10}\\s = \dfrac{1.1\times 10^{-10}}{0.02} \text{ mol/L} = 5.5 \times 10^{-9} \text{ mol/L}[/tex]

c. Using ionic strength and activities

(i) Calculate the ionic strength of 0.02 mol·L⁻¹ Ba(NO₃)₂

The formula for ionic strength is  

[tex]\mu = \dfrac{1}{2} \sum_{i} {c_{i}z_{i}^{2}}\\\\\mu = \dfrac{1}{2} (\text{[Ba$^{2+}$]}\cdot (2+)^{2} + \text{[NO$_{3}$^{-}$]}\times(-1)^{2}) = \dfrac{1}{2} (\text{0.02}\times 4 + \text{0.04}\times1)= \dfrac{1}{2} (0.08 + 0.04)\\\\= \dfrac{1}{2} \times0.12 = 0.06[/tex]

(ii) Silver iodate

a. Calculate the activity coefficients of the ions

[tex]\log \gamma = -0.51z^{2}\sqrt{I} = -0.051(1)^{2}\sqrt{0.06} = -0.51\times 0.24 = -0.12\\\gamma = 10^{-0.12} = 0.75[/tex]

b. Calculate the solubility

AgIO₃(s) ⇌ Ag⁺(aq) + IO₃⁻(aq)

[tex]K_{sp} =\text{[Ag$^{+}$]$\gamma_{Ag^{+}}$[IO$_{3}$^{-}$]$\gamma_{IO_{3}^{-}}$} = s\times0.75\times s \times 0.75 =0.56s^{2}= 3.0 \times 10^{-8}\\s^{2} = \dfrac{3.0 \times 10^{-8}}{0.56} = 5.3 \times 10^{-8}\\\\s =2.3 \times 10^{-4}\text{ mol/L}[/tex]

(iii) Barium sulfate

a. Calculate the activity coefficients of the ions

[tex]\log \gamma = -0.51z^{2}\sqrt{I} = -0.051(2)^{2}\sqrt{0.06} = -0.51\times16\times 0.24 = -0.50\\\gamma = 10^{-0.50} = 0.32[/tex]

b. Calculate the solubility

BaSO₄(s) ⇌ Ba²⁺(aq) + SO₄²⁻(aq

[tex]K_{sp} =\text{[Ba$^{2+}$]$\gamma_{ Ba^{2+}}$[SO$_{4}$^{2-}$]$\gamma_{ SO_{4}^{2-}}$} = (0.02 + s) \times 0.32\times s\times 0.32 \approx  0.02\times0.10s\\2.0\times 10^{-3}s = 1.1 \times 10^{-10}\\s = \dfrac{1.1\times 10^{-10}}{2.0 \times 10^{-3}} \text{ mol/L} = 5.5 \times 10^{-8} \text{ mol/L}[/tex]