
Respuesta :
Answer:
- 0.352
Step-by-step explanation:
Data provided in the question:
Age (X) Â 50 Â Â Â 34 Â Â Â 12 Â Â Â 36 Â Â Â 18
    (Y)  6.20   1.40   6.05   3.30   8.05
Now,
correlation coefficient, r = [tex]\frac{\sum((X-My)(Y-Mx))}{\sqrt{((SSx)(SSy))}}[/tex]
Here,
∑(X - Mx)² = SSx
∑(Y - My)² = SSy
Mx: Mean of X Values  = [tex]\frac{50+34+12+36+18}{5}[/tex] = 30
My: Mean of Y Values  = [tex]\frac{6.20+1.40+6.05+3.30+8.05}{5}[/tex] = 5
X - Mx & Y - My: Deviation scores
(X - Mx)² & (Y - My)²: Deviation Squared
(X - Mx)(Y - My): Product of Deviation Scores
Thus,
( X - Mx )     ( Y - My )      (X - Mx)²     (Y - My)²     (X - Mx)(Y - My)
 20.0         1.20         400.0       1.44            24.0
 4.0         -3.60          16.0         12.96          -14.4
- 18.0 Â Â Â Â Â Â Â Â 1.05 Â Â Â Â Â Â Â Â Â 324.0 Â Â Â Â Â Â 1.102 Â Â Â Â Â Â Â Â Â Â -18.9
 6.0         -1.70          36.0         2.89           -10.2
- 12.0 Â Â Â Â Â Â Â Â 3.05 Â Â Â Â Â Â Â Â 144.0 Â Â Â Â Â Â Â 9.303 Â Â Â Â Â Â Â Â Â Â -36.6
-------------------------------------------------------------------------------------------------------
∑(X - Mx)²  = 920.0
∑(Y - My)² = 27.695
∑(X - Mx)(Y - My)  = -56.1
thus,
r = [tex]\frac{-56.1}{\sqrt{((920)(27.695))}}[/tex]
or
r = - 0.352