A smooth circular hoop with a radius of 0.800 m is placed flat on the floor. A 0.300-kg particle slides around the inside edge of the hoop. The particle is given an initial speed of 10.00 m/s. After one revolution, its speed has dropped to 5.00 m/s because of friction with the floor.
(a) Find the energy transformed from mechanical to internal in the particle—hoop—floor system as a result of friction in one revolution.
(b) What is the total number of revolutions the particle makes before stopping? Assume the friction force remains constant during the entire motion.

Relax

Respuesta :

Answer:

a)11.25 J

b)Number of revolution = 1

Explanation:

Given that

Radius ,r= 0.8 m

m= 0.3 kg

Initial speed ,u= 10 m/s

final speed ,v= 5 m/s

a)

Initial energy

[tex]KE_i=\dfrac{1}{2}mu^2[/tex]

[tex]KE_i=\dfrac{1}{2}0.3\times 10^2[/tex]

KEi= 15 J

Final kinetic energy

[tex]KE_f=\dfrac{1}{2}mv^2[/tex]

[tex]KE_f=\dfrac{1}{2}0.3\times 5^2[/tex]

KEf=3.75 J

The  energy transformed from mechanical to internal = 15 - 3.75 J = 11.25 J

b)

The minimum value to complete the circular arc

 [tex]V=\sqrt{r.g}[/tex]

Now by putting the values

[tex]V=\sqrt{0.8\times 10}[/tex]

V= 2.82 m/s

So kinetic energy KE

[tex]KE=\dfrac{1}{2}mV^2[/tex]

[tex]KE=\dfrac{1}{2}0.3\times 2.82^2[/tex]

KE=1.19 J

ΔKE= KEi - KE

ΔKE= 15- 1.19 J

ΔKE=13.80 J

The minimum energy required to complete 2 revolutions = 2 x 11.25 J

                                                                                                    = 22.5 J

Here 22.5 J is greater than 13.8 J.So the particle will complete only one revolution.

Number of revolution = 1