
Answer:
The measure of angles of parallelogram are
∠A = 50° ,
∠B = 130° ,
∠C = 50° ,
∠D = 130°
Step-by-step explanation:
Given as for a parallelogram :
The vertices of parallelogram is A B C D in clockwise
The measure of angle A = ∠A =  ( 2 x )°
The measure of angle B =  ∠B =  ( 5 x + 5 )°
Now, for a parallelogram , the sum of measure of all four angles = 360°
From The property of Parallelogram
A ) The adjacent angles are supplementary
So, ∠A + ∠B =  180°
Or, ( 2 x )° + ( 5 x + 5 )° = 180°
Or, ( 7 x + 5 )° = 180°
Or , ( 7 x )° = 180° - 5°
Or , ( 7 x )° = 175°
∴  x = [tex]\frac{175}{7}[/tex]
I.e x = 25°
So,  ∠A =  ( 2 x )° =  ( 2 ×25° )
I.e , ∠A = 50°
 ∠B =  ( 5 x + 5 )°
Or, ∠B =  ( 5 ×25° + 5 )°
I.e ,  ∠B = 130°
B ) The opposite angles of parallelogram is equal
  So,  ∠C =  ∠A = 50°
I,e  ∠C = 50°
And ∠D = ∠B = 130°
I.e  ∠D = 130°
Hence The measure of angles of parallelogram are ∠A = 50° , ∠B = 130° , ∠C = 50° , ∠D = 130°  Answer