A jet airplane is in level flight. The mass of the airplane is m=8930 kg. The airplane travels at a constant speed around a circular path of radius ????=8.23 mi and makes one revolution every T=0.109 h. Given that the lift force acts perpendicularly upward from the plane defined by the wings, what is the magnitude of the lift force acting on the airplane?

Relax

Respuesta :

Answer:88.95 kN

Explanation:

Given

mass of Plane =8930 kg

radius of circular path [tex]=8.23 mi\approx 13244.9 m[/tex]

Time period =0.109 h

Let F be the lift force

If Plane is making an [tex]\theta [/tex] with horizontal then F will make an angle of [tex]90-\theta [/tex] w.r.t horizontal

Thus

[tex]Fcos\theta =mg[/tex]---1

[tex]Fsin\theta =m\omega ^2r[/tex]------2

and [tex]\omega [/tex]is given by

[tex]\omega =\frac{2\pi }{T}=\frac{2\times 3.142}{392.4}=0.0160 rad/s[/tex]

Divide 2 & 1

[tex]tan\theta =\frac{\omega ^2r}{g}[/tex]

[tex]tan\theta =\frac{0.0160^2\times 13244.9}{9.8}[/tex]

[tex]tan\theta =0.345[/tex]

[tex]\theta =19.03[/tex]

Substitute [tex]\theta [/tex]in 1

[tex]Fcos(19.03)=8930\times 9.8[/tex]

[tex]F=88.95 kN[/tex]