Relax

Respuesta :

Answer:

sin³x

Step-by-step explanation:

Using the trigonometric identities

1 + cot²x = csc²x

cscx = [tex]\frac{1}{sinx}[/tex]

Given

[tex]\frac{sinx}{1+cot^2x}[/tex]

= [tex]\frac{sinx}{csc^2x}[/tex]

= [tex]\frac{sinx}{\frac{1}{sin^2x} }[/tex]

= sinx × sin²x

= sin³x