You drop a rock from the top of a building of height h. Your co-experimenter throws a rock from the same spot with a vertically downward speed vo, a time t after you released your rock. The two rocks hit the ground at the same time. Find the expression for the time t, in terms of vo, g, and h.

Relax

Respuesta :

Answer:

[tex]t=\sqrt{2h/g}-(1/g)*(\sqrt{v_{o}^2+2gh}-v_{o})[/tex]

Explanation:

First person:

[tex]y(t)=y_{o}-v_{o}t-1/2*g*t^{2}[/tex]

[tex]v_{o}=0[/tex]     the rock is dropped

[tex]y_{o}=h[/tex]    

[tex]y(t)=h-1/2*g*t^{2}[/tex]

after t1 seconds it hit the ground, y(t)=0

[tex]0=h-1/2*g*t_{1}^{2}[/tex]

[tex]t_{1}=\sqrt{2h/g}[/tex]

Second person:

[tex]y(t)=y_{o}-v_{o}t-1/2*g*t^{2}[/tex]

[tex]v_{o}[/tex]     the rock has a initial downward speed  

[tex]y_{o}=h[/tex]    

[tex]y(t)=h-v_{o}t-1/2*g*t^{2}[/tex]

after t2 seconds it hit the ground, y(t)=0

[tex]0=h-v_{o}t_{2}-1/2*g*t_{2}^{2}[/tex]

[tex]g*t_{2}^{2}+2v_{o}t_{2}-2h=0[/tex]

[tex]t_{2}=(1/2g)*(-2v_{o}+\sqrt{4v_{o}^2+8gh})[/tex]

the time t when the second person throws the rock after the first person release the rock is:

t=t1-t2

[tex]t=\sqrt{2h/g}-(1/g)*(\sqrt{v_{o}^2+2gh}-v_{o})[/tex]