A heat engine operates in a Carnot cycle between 75◦C and 492◦C. It absorbs 19300 J of energy per cycle from the hot reservoir. The duration of each cycle is 1.16 s. What is the mechanical power output of this engine? Answer in units of kW.

Relax

Respuesta :

Answer:

9.069 KW

Explanation:

The heat engine operates in a carnot cycle between 75°C to 492°C  so the lower temperature [tex]T_L=75^{\circ}C=273+75=348K[/tex] and the higher temperature [tex]T_H=492^{\circ}C=273+492=765K[/tex]

Efficiency of the carnot cycle [tex]\eta =1-\frac{T_L}{T_H}=1-\frac{348}{765}=0.545[/tex]

We know that [tex]\eta =\frac{work\ done }{heat\ absorbed}[/tex]

[tex]work\ done=\eta \times heat\ abosorbed=0.545\times 19300=10520.392\ J[/tex]

it is given that duration of each cycle is 1.16 sec so power output [tex]P=\frac{W}{T}=\frac{10520.392}{1.16}=9069.30\ W=9.069\ KW[/tex]