Respuesta :
Answer:
Part 1) For x=1 year, [tex]y=\$23,750[/tex] Â
Part 2) For x=2 years, [tex]y=\$22,562.50[/tex] Â
Part 3) For x=3 years, [tex]y=\$21,434.38[/tex] Â
Step-by-step explanation:
we know that
The  formula to calculate the depreciated value  is equal to Â
[tex]y=P(1-r)^{x}[/tex] Â
where Â
y is the depreciated value Â
P is the original value Â
r is the rate of depreciation  in decimal Â
x  is the number of years Â
in this problem we have Â
[tex]P=\$25,000\\r=5\%=0.05[/tex]
substitute
[tex]y=25,000(1-0.05)^{x}[/tex] Â
[tex]y=25,000(0.95)^{x}[/tex] Â
Part 1) Find the value of the printer, to the nearest cent, in year 1
so
For x=1 year
substitute in the exponential equation
[tex]y=25,000(0.95)^{1}[/tex] Â
[tex]y=\$23,750[/tex] Â
Part 2) Find the value of the printer, to the nearest cent, in year 2
so
For x=2 years
substitute in the exponential equation
[tex]y=25,000(0.95)^{2}[/tex] Â
[tex]y=\$22,562.50[/tex] Â
Part 3) Find the value of the printer, to the nearest cent, in year 3
so
For x=3 years
substitute in the exponential equation
[tex]y=25,000(0.95)^{3}[/tex] Â
[tex]y=\$21,434.38[/tex] Â