
Respuesta :
Answer:
μ = 66, σ = 2; The distribution is bell-shaped; Yes, this depends on the sample size; z = -1.2; z = 1.6; P(X ≥ 63.6) = 0.8849; P(X < 69.2) = 0.9452; P(63.6 ≤ X ≤ 69.2) = 0.8301; 65.5
Step-by-step explanation:
The central limit theorem states that if the sample size is greater than 30, the sample mean is roughly the same as the population mean. Â This means it is 66.
The standard deviation of a sampling distribution of means is given by
σ/√n
For our data, this is
12/(√36) = 12/6 = 2
The central limit theorem states that the sampling distribution is approximately normal, so it will be bell-shaped.
The formula for the z score of a sampling distribution of means is
[tex]z=\frac{\bar{X}-\mu}{\sigma \div \sqrt{n}}[/tex]
For the value of x = 63.6,
z = (63.6-66)/(12/(√36)) = -2.4/2 = -1.2
For the value of x = 69.2,
z = (69.2-66)/(12/(√36)) = 3.2/2 = 1.6
Using a z table, we see that the area under the curve to the left of z = -1.2 (for x = 63.6) is 0.1151.  However, we want P(x̄ ≥ 63.6); this means we want the area to the right.  We subtract our value from 1:
1-0.1151 = 0.8849
Using a z table, we see that the area under the curve to the left of z = 1.6 (for x = 69.2) is 0.9452.  This is P(x̄ < 69.2).
Since we have the area under the curve to the left of each endpoint, to find P(63.6 ≤ x̄ ≤ 69.2) we subtract these values:
0.9452-0.1151 = 0.8301
To find the value that would correspond in 60% of values being larger than, we first consider the fact that the z table gives us areas to the left of values, which is probabilities less than the value. Â Our question is what number has a probability of 60% being larger than; this means we need to subtract from 1:
1-0.6 = 0.4
In a z table, we find the value as close to 0.4 as we can get. Â This is 0.4013, which corresponds with a z score of -0.25.
Substituting this into our z formula, we have
[tex]z=\frac{\bar{X}-\mu}{\sigma \div \sqrt{n}}\\\\-0.25=\frac{\bar{X}-66}{12\div \sqrt{36}}\\\\-0.25=\frac{\bar{X}-66}{12\div 6}\\\\-0.25=\frac{\bar{X}-66}{2}[/tex]
Multiply both sides by 2:
2(-0.25) = ((X-66)/2)(2)
-0.5 = X-66
Add 66 to each side:
-0.5+66 = X-66+66
65.5 = X