
Respuesta :
For this case we have the following expression:
 [tex]v = pir ^ 2h [/tex]
 Substituting values we have:
 [tex]v = pi (x + 8) ^ 2 (2x + 3) [/tex]
 Rewriting we have:
 [tex]v = pi (x ^ 2 + 16x + 64) (2x + 3) v = pi ((2x ^ 3 + 32x ^ 2 + 128x) + (3x ^ 2 + 48x + 192)) [/tex]
 [tex] v = pi (2x ^ 3 + 35x ^ 2 + 176x + 192) v = (2pix ^ 3 + 35pix ^ 2 + 176pix + 192pi)[/tex]
 Answer:
 An expression that represents the volume of the can is:
 c) 2 pie x^3 + 35 pie x^2 +176 pie x + 192 pie
 [tex]v = pir ^ 2h [/tex]
 Substituting values we have:
 [tex]v = pi (x + 8) ^ 2 (2x + 3) [/tex]
 Rewriting we have:
 [tex]v = pi (x ^ 2 + 16x + 64) (2x + 3) v = pi ((2x ^ 3 + 32x ^ 2 + 128x) + (3x ^ 2 + 48x + 192)) [/tex]
 [tex] v = pi (2x ^ 3 + 35x ^ 2 + 176x + 192) v = (2pix ^ 3 + 35pix ^ 2 + 176pix + 192pi)[/tex]
 Answer:
 An expression that represents the volume of the can is:
 c) 2 pie x^3 + 35 pie x^2 +176 pie x + 192 pie
input
V=pi(x+8)^2(2x+3)
V=pi(x^2+16x+64)(2x+3)
V+pi(2x^3=35x^2+176x+192)
V=2πx³+35πx²+176πx+192π
V=pi(x+8)^2(2x+3)
V=pi(x^2+16x+64)(2x+3)
V+pi(2x^3=35x^2+176x+192)
V=2πx³+35πx²+176πx+192π