
Respuesta :
[tex]\bf ~~~~~~~~~~~~\textit{middle point of 2 points }
\\\\
\begin{array}{ccccccccc}
&&x_1&&y_1&&x_2&&y_2\\
% (a,b)
&&(~ x &,& y~)
% (c,d)
&&(~ -9 &,& -1~)
\end{array}\qquad
% coordinates of midpoint
\left(\cfrac{ x_2 + x_1}{2}\quad ,\quad \cfrac{ y_2 + y_1}{2} \right)
\\\\\\
\left( \cfrac{-9+x}{2}~~,~~\cfrac{-1+y}{2} \right)=\stackrel{midpoint}{(8,14)}\implies
\begin{cases}
\cfrac{-9+x}{2}=8\\\\
-9+x=16\\
\boxed{x=25}\\
-------\\
\cfrac{-1+y}{2} =14\\\\
-1+y=28\\
\boxed{y=29}
\end{cases}[/tex]
[tex]\bf -------------------------------\\\\ \begin{array}{ccccccccc} &&x_1&&y_1&&x_2&&y_2\\ % (a,b) &&(~ x &,& y~) % (c,d) &&(~10 &,& 12~) \end{array}\qquad \\\\\\ \left( \cfrac{10+x}{2}~~,~~\cfrac{12+y}{2} \right)=\stackrel{midpoint}{(6,9)}\implies \begin{cases} \cfrac{10+x}{2}=6\\\\ 10+x=12\\ \boxed{x=2}\\ -------\\ \cfrac{12+y}{2} =9\\\\ 12+y=18\\ \boxed{y=6} \end{cases}[/tex]
[tex]\bf -------------------------------\\\\ \begin{array}{ccccccccc} &&x_1&&y_1&&x_2&&y_2\\ % (a,b) &&(~ x &,& y~) % (c,d) &&(~10 &,& 12~) \end{array}\qquad \\\\\\ \left( \cfrac{10+x}{2}~~,~~\cfrac{12+y}{2} \right)=\stackrel{midpoint}{(6,9)}\implies \begin{cases} \cfrac{10+x}{2}=6\\\\ 10+x=12\\ \boxed{x=2}\\ -------\\ \cfrac{12+y}{2} =9\\\\ 12+y=18\\ \boxed{y=6} \end{cases}[/tex]